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Abstract— We consider the question of how to store a value
secretly on devices that continually leak information about their
internal state to an external attacker. If the secret value is stored
on a single device from which it is efficiently retrievable, and the
attacker can leak even a single predicate of the internal state of
that device, then she may learn some information about the secret
value itself. Therefore, we consider a setting where the secret value
is shared between multiple devices (or multiple components of a
single device), each of which continually leaks arbitrary adaptively
chosen predicates its individual state. Since leakage is continual,
each device must also continually update its state so that an
attacker cannot just leak it entirely one bit at a time. In our model,
the devices update their state individually and asynchronously,
without any communication between them. The update process is
necessarily randomized, and its randomness can leak as well.

As our main result, we construct a sharing scheme for two
devices, where a constant fraction of the internal state of each
device can leak in between and during updates. Our scheme has
the structure of a public-key encryption, where one share is a secret
key and the other is a ciphertext. As a contribution of independent
interest, we also get public-key encryption in the continual leakage
model, introduced by Brakerski et al. and Dodis et al. (FOCS ’10).
This scheme tolerates continual leakage on the secret key and the
updates, and simplifies the recent construction of Lewko, Lewko
and Waters (STOC ’11). For our main result, we show how to
update the ciphertexts of the encryption scheme so that the message
remains hidden even if an attacker interleaves leakage on secret key
and ciphertext shares. The security of our scheme is based on the
linear assumption in prime-order bilinear groups.

We also provide an extension to general access structures real-
izable by linear secret sharing schemes across many devices. The
main advantage of this extension is that the state of some devices
can be compromised entirely, while that of the all remaining
devices is susceptible to continual leakage. Lastly, we show im-
possibility of information theoretic sharing schemes in our model,
where continually leaky devices update their state individually.

1. INTRODUCTION

One of the central tenets of theoretical computer science
is that computation can be analyzed abstractly and indepen-
dently of the physical processes that ultimately implement
it. This is the paradigm usually followed in cryptography,
where we analyze cryptographic algorithms as abstract com-
putations that get inputs and generate outputs with the help
of some internal secret state. Unfortunately, this abstraction
may fail to properly model the real world where various
physical attributes of a computational device (e.g. timing,
power-consumption, temperature, radiation, acoustics, etc.)
can be measured and may leak useful information about the

internal state of the device. Attacks that use such information
to break security are called side-channel leakage attacks, and
they have been analyzed and exploited in many recent works
(see e.g. [26], [12] and the references therein). These attacks
pose a major challenge to the applicability of cryptographic
theory to practice.

MODELING LEAKAGE. In recent years, cryptographic the-
ory has taken on the challenge of modeling leakage attacks
formally and constructing cryptographic primitives that re-
main provably secure even in the presence of such attacks.
Several different proposed models of leakage have emerged,
with an emphasis on capturing large general classes of
leakage. In this work, we will focus on the continual-leakage
model, which came as an extension of the earlier bounded-
leakage model, both of which are discussed below.1

The bounded-leakage model was introduced by Akavia,
Goldwasser and Vaikuntanathan [2] and it allows the attacker
to learn arbitrary information about the internal secret state
of a device, as long as the total amount of leaked information
(measured in bits) is bounded by some parameter `, called
the leakage bound. In other words, the attacker can learn up
to ` arbitrary (efficiently computable) predicates of the inter-
nal state of a device, throughout its lifetime. Unfortunately,
by bounding the overall amount of observable leakage, this
model does not seem to adequately capture an attacker with
prolonged access to a device and the ability to make many
side-channel measurements over time.

The continual-leakage model, introduced concurrently by
Brakerski et al. [6] and Dodis et al. [8], addresses exactly this
issue and allows the attacker to continually leak information
about the internal state of a device over time, as long as
only the rate of leakage is bounded. More specifically, the
device has some internal notion of time periods and, at the
end of each period, it updates its internal state, using some
fresh local randomness. The attacker is allowed to learn up
to ` predicates of the internal state (including the random
coins of the update process) in each time period, but can
do so for as many time periods as desired, and there is
no bound on the total amount of information learned. Prior
work in the bounded leakage model [2], [24], [3], [20] and

1For brevity, we do not discuss many prior models of leakage and other
related results, but wish to emphasize that this area has a long and rich
history beyond just the results in the last few years. See e.g. the survey of
[4] for an overview.



the continual-leakage model [6], [8], [22], [21] construct
encryption, signature and related primitives.

We also briefly mention an alternative model called the
only computation leaks information model [23], [11]. This
model also considers continual leakage but, in each time
period, the attacker is limited to only leaking information
about the portion of the state accessed by the “computation”
during that period (and never on the full state of a device).
There are several variants of this model depending on how
one breaks up a computation into distinct time periods.

STORING SECRETS ON LEAKY DEVICES. In this work, we
ask a basic question of how to store a secret value (message)
on continually leaky devices while preserving its secrecy.
Unfortunately, in the bounded and continual leakage models,
it is impossible to store a message secretly on a single leaky
device from which it is efficiently retrievable, because a
single leaked predicate of the internal state of such device
can reveal (say) the first bit of the message. There are two
natural alternatives to overcoming this difficulty:

1. We can weaken the leakage model and restrict the
attacker to only learning some limited class of predicates
of the internal state of the device. This class should
capture realistic attacks but cannot be powerful enough
to recover the stored secret, even though there is an
efficient method for doing so.

2. We can consider a model where the secret is shared
between two or more devices, each of which leaks
individually in the continual leakage model. The attacker
can continually learn arbitrary predicates of the internal
state of each individual device (but not of the combined
joint state of all the devices).

In the rest of the paper, we will frame our discussion
in terms of the second approach. However, this can also
be naturally viewed as a concrete instantiation of the first
approach, where we think of the state of a single device as
divided into multiple components, and leakage is restricted
to the limited class of predicates that each depend on only
a single component. This may be a natural and realistic
class of leakage attacks if the components of the state
are e.g. stored in different areas of memory and accessed
separately by the device. In particular, this can be seen as a
strengthening of the “only computation leaks information”
(OCLI) model. In the OCLI model, the various components
leak individually but only when accessed by a computation,
while here they leak individually but all the time. We note
that this strengthening was explicitly considered by prior
works in the OCLI model, starting with Dziembowski and
Pietrzak [11] in the case of stream ciphers. Although prior
results in various models of continual leakage construct
many basic and advanced cryptographic primitives, they do
not address the simple question of storing a consistent value
secretly on leaky devices. Indeed, they rely on the fact that
one does not need to store a consistent secret key over time

to e.g. decrypt, sign, or generate a random stream.
Let us now describe our concrete model in more detail.

We assume that each device has its own individual notion
of time periods, but these notions can differ across devices
and they need not be synchronized. At the end of each time
period, a device updates its share using some local fresh
randomness. This update is conducted individually, and the
devices do not communicate during the update process. At
any point in time, no matter how many updates occurred
on each device, the shares of the devices can be efficiently
combined to reconstruct the shared secret message.

For security, we allow the attacker to continually learn
arbitrary (efficiently computable) predicates of the internal
state of each device. The attacker can choose the predicates
adaptively and can alternate leakage between the devices.
The internal state of each device in each time period consists
of the current version of its share and the randomness of
the update process used to derive the next share.2 This
models the state of the device even during the update
process, which we assume can leak as well. The attacker
can arbitrarily schedule the updates on different devices. We
only restrict it to leaking at most ` predicates from each
device during each time period. The shared message should
remain semantically secure throughout the game.3 We call
a scheme satisfying these criteria an `-continual-leakage-
resilient sharing (CLRS).

A solution with just two continually leaky devices is
optimal, and that adding more devices only makes the
problem easier. However, we will also consider an extension
where the state of some devices can be fully compromised,
in which case having more devices will be useful.

OUR RESULTS. Our main result is to construct an `-CLRS
scheme between two devices, for any polynomial leakage-
bound `. The size of the shares necessarily depends on and
exceeds the leakage bound `. However, we guarantee that
` is a constant fraction of the share size (albeit a small
constant), and hence we can interpret our results as saying
that a constant fraction of each share can leak in each time
period. The security of our scheme is based on the well-
studied linear assumption in prime-order bilinear groups.

We also show that computational assumptions are neces-
sary and that this primitive cannot be realized information
theoretically, even for ` = 1 bit of leakage. Intuitively,
this is because an unbounded-time leakage function can
enumerate the entire set of possible values reachable via
updates. Although this set might shrink in each time period,
we show how to consistently leak one fixed value in this set
incrementally bit by bit, eventually learning it all.

2We implicitly assume that the devices can perfectly delete/overwrite
past values during an update.

3The definition also implies security if one share is fully revealed at the
end of the game (but no more leakage afterward). A distinguishing strategy
that uses the fully revealed share to break security could also be encoded
into a predicate, which we can just leak from said share to break security.



We also extend our positive result to general access
structures realizable by linear secret sharing schemes over
many devices. The main advantage is that the attacker can
even fully corrupt some subset of the devices and continually
leak from all others. We only require that the corrupted
subset is unauthorized and remains unauthorized with the
addition of any other single device.4 Our main scheme for
two devices becomes a special case, where we apply the
above to a two-out-of-two linear sharing scheme.

Lastly, our `-CLRS scheme has special structure where
one share is a secret key and the other share is a ci-
phertext of a public key encryption scheme. This immedi-
ately gives continual-leakage-resilient public-key encryption
(CLR-PKE) [6], [22], [21], where continual leakage on the
secret key does not allow an attacker to decrypt future
ciphertexts. Moreover, our scheme also allows for significant
leakage during the updates. This property was recently
achieved by a scheme of Lewko, Lewko and Waters [21]
under a strong assumption called the generalized subgroup
decisional assumption in composite-order bilinear groups.
As a result of independent interest, we substantially simplify
the scheme and the proof of [21], converting it into a scheme
over the more common prime-order bilinear groups, with a
proof of security under the more common linear assumption.
We get other benefits along the way, including shorter public
keys and improved efficiency by directly encrypting group
elements rather than bits.

OUR TECHNIQUES. Our construction begins with the idea
of using an encryption scheme, and making one share a
secret key and the other share a ciphertext. Taking any
of the recent results on CLR-PKE, we get a method for
updating (just) the key share. We also get the guarantee that
the message remains hidden even if the attacker continually
leaks on the key share and later gets the ciphertext share in
full. Unfortunately, this does not suffice for three reasons.
Firstly, we need a method for updating the ciphertext, which
is not a property of CLR-PKE. Secondly, we need a new
security property to guarantee that, even if the ciphertext
and secret-key shares are both continually leaking at the
same time, the shared message stays hidden. This property
is strictly stronger, and significantly harder to analyze, than
the security of CLR-PKE. Thirdly, the proof strategy of [6],
[22] does not deal with leakage on key updates directly,
but instead uses a generic “guessing” argument to allow
for some small (logarithmic) leakage. Unfortunately, this
argument does not apply to the case of sharing. In particular,
security without leakage on updates does not seem to imply
any guarantees if even 1 bit can leak during the update.

Therefore, our starting point will be the recent CLR-PKE
scheme of [21], which provides a new proof strategy to argue

4This is optimal as otherwise the leaked predicate of an uncorrupted
device could run the reconstruction procedure using the shares of all the
corrupted devices and leak (say) the first bit of the shared message.

about leakage of key updates directly. Although we borrow
many high level ideas from this proof strategy, our first result
is to significantly simplify the construction and the proof of
[21], getting several other benefits along the way (mentioned
above). Next, we show a natural method for updating the
ciphertexts of the new scheme, analogously to the way that
the secret keys are updated. Lastly, we carefully lay out a
new proof strategy to argue that continual leakage on secret
keys and ciphertexts keeps the message hidden. This proof
strategy is significantly more involved then arguing CLR-
PKE security alone, and involves moving from a game where
every secret key correctly decrypts every ciphertext in every
time period, to a game where this is never the case.

RELATION TO OTHER PRIMITIVES. It is useful to compare
CLRS schemes to other primitives from the literature. Most
obviously, standard secret sharing schemes [29] provide se-
curity when some subset of the shares are fully compromised
while others are fully secure. In CLRS schemes, all shares
leak and hence none are fully secure. The idea of updating
shares to protect them against continual compromise was
also considered in the context of proactive secret sharing
[16]. However, the motivation there was to protect against
a mobile adversary that corrupts different subsets of the
shares in different time periods, while in our case all shares
leak in all time periods. Another important connection is to
the leakage-resilient storage scheme of [7]. This gives an
information-theoretic solution for sharing a secret securely
on two leaky devices/components in the bounded leakage
model, where the overall amount of leakage on each share is
bounded. The work of [10] extends this information theoretic
solution to the continual leakage model, but requires that de-
vices have access to some correlated randomness generated
in a leak-free way (e.g. using leak-free hardware) and update
their shares interactively. In contrast, we do not assume
any leak-free hardware. Also, our updates are performed
individually and we show that this comes at the necessary
expense of having computational assumptions.

Related to the above model, prior (unpublished) work by
[1] was the first to propose the two processor distributed
setting for public key decryption, where the systems secret
state is shared by both processors, and is subject to continual
memory leakage attacks, where the attacker is restricted to
leak from each of the processors share of the secret state
separately. Their ultimate goal was the security of the public
key encryption scheme rather than the maintenance of a
particular secret, which is addressed by an interactive secret
state refresh protocol in their work.

The prior works [19], [14] consider general compilers for
executing arbitrary computations privately on leaky devices.
Both works provide solutions in variants of the “only
computation leaks information model”, but require some
additional leak-free hardware. Implicitly, these works also
address the question of storing a value secretly on leaky



devices, since the state of the computation must be somehow
stored consistently. However, the use of leak-free hardware
in these solutions greatly simplifies the problem of storage
and avoids virtually all of the challenges that we address
in the current work. We believe that our work provides
an important first step in the direction of building general
compilers without any leak-free hardware, since the question
of (just) securing storage must be addressed as a part of any
solution to the larger question of securing computation.

ORGANIZATION. In this proceedings version, we only
describe a simplified version of our scheme whose security
can be proven under the DDH assumption in bilinear groups
(this is also called the SXDH assumption; see below below).
We then sketch the main ideas behind the proof. The rest
of our results and complete proofs are deferred to the full
version [9] of this work. In particular, there we describe
a generalized variant of the scheme whose security holds
under a progressively weaker class of assumptions called
k-linear. We also generalize the scheme to arbitrary linear
secret sharing between many parties, and show information
theoretic impossibility.

2. NOTATION AND PRELIMINARIES

LINEAR ALGEBRA. Let F be a field. We denote row vectors
with ~v ∈ Fn. If ~v1, . . . , ~vm ∈ Fn are m vectors we let
span(~v1, . . . , ~vm) ⊆ Fn denote the linear space spanned by
these vectors. We let 〈~v, ~w〉 def

= ~v · ~w> be the dot product
of ~v, ~w ∈ Fnq . If A ∈ Fn×m is a n × m matrix of
scalars, we let colspan(A), rowspan(A) denote the subspaces
spanned by the columns and rows of A respectively. If
V ⊆ Fn is a subspace, we let V⊥ denote the orthogonal
space of V , defined by V⊥ def

= { ~w ∈ Fnq | 〈~w,~v〉 =
0 ∀~v ∈ V }. We write (~v1, . . . , ~vm)⊥ as shorthand for
span(~v1, . . . , ~vm)⊥. We write V ⊥ W if V ⊆ W⊥ and
therefore also W ⊆ V⊥. We define the kernel of a matrix
A to be ker(A)

def
= rowspan(A)⊥.

For integers d, n,m with 1 ≤ d ≤ min(n,m), we use the
notation Rkd(Fn×mq ) to denote the set of all rank d matrices
in Fn×mq . When W ⊆ Fmq is a subspace, we also use the
notation Rkd(Fn×mq | row ∈ W) to denote the set of rank d
matrices in Fn×mq whose rows come from the subspace W .

MATRIX-IN-THE-EXPONENT NOTATION. Let G be a group
of prime order q generated by an element g ∈ G and
let A ∈ Fn×mq be a matrix. Then we use the notation
gA ∈ Gn×m to denote the matrix

(
gA
)
i,j

def
= g(A)i,j of

group elements. Note that, given a matrix of group elements
gA ∈ Gn×m and a matrix B ∈ Fm×kq of “exponents”,
one can efficiently compute gAB . However, given gA and
gB it is (generally) not feasible to efficiently compute
gAB . On the other hand, if G1,G2,GT are three groups
of prime order q and e : G1 × G2 → GT is an
efficient bilinear map, then, given gA and hB for generators
g ∈ G1,h ∈ G2, one can efficiently compute e(g,h)AB via

(e(g,h)AB)i,j =
∏m
k=1 e

(
gAi,k ,hBk,j

)
. We abuse notation

and let e(gA,hB) = e(g,h)AB denote this operation.

HARDNESS ASSUMPTIONS. Let G be a pairing gener-
ation algorithm (G1,G2,GT , q, e,g,h) ← G(1λ), where
G1,G2,GT are descriptions of cyclic group of prime order
q with generators g ∈ G1,h ∈ G2 and e is a description
of an efficient bilinear map e : G1 × G2 → GT .
We say that the pairing is symmetric if G1 = G2 and
asymmetric otherwise. We will rely on an assumption that
we call the k-rank hiding assumption. This assumption was
introduced by [24] and shown to be implied by the more
common k-linear assumption [5], [17], [28]. The k-rank
hiding assumption on the left group G1 states that for any
k ≤ i < j ≤ min{m,n}, it is computationally infeasible to
distinguish rank i and rank j matrices in the exponent of g:(

prms,gX
∣∣∣∣ prms← G(1λ)

X
$← Rki(Fn×mq )

)
comp
≈(

prms,gX
∣∣∣∣ prms← G(1λ)

X
$← Rkj(Fn×mq )

)
Similarly, we can make the k-rank hiding assumption on the
right group G2, by replacing g with h in the above. We say
that the k-rank hiding assumption holds for G if it holds for
both the left and right groups. It is easy to see that the k-rank
hiding assumption gets weaker as k increases. Therefore,
the k = 1 version of the assumption is the strongest. In fact,
when k = 1, this assumption is equivalent to 1-linear which
is just DDH. Unfortunately, it is known that DDH cannot
hold in symmetric pairings where G1 = G2. However, it is
often reasonable to assume that DDH holds in asymmetric
pairings, and this is also called the external Diffie-Hellman
assumption SXDH [27], [5], [13], [30]. Since the SXDH
assumption is fairly strong, it is sometimes preferable to use
k ≥ 2. The (k = 2)-linear assumption, also called decisional
linear, is commonly believed to hold in many symmetric and
asymmetric pairings.

3. DEFINITIONS

3.1. Continual-Leakage-Resilient Sharing (CLRS)

We now formally define the notion of a continual-leakage-
resilient sharing (CLRS) scheme between two devices. The
scheme has the following syntax:
ShareGen (1λ,msg) → (sh1, sh2) The share generation
algorithm takes as input the security parameter λ and a
secret message msg. It outputs two shares, sh1 and sh2

respectively.
Updateb(shb) → sh′b : The randomized update algorithm
takes the index b and the current version of the share shb
and outputs an updated version sh′b. We use the notation
Updateib(shb) to denote the operation of updating the share



shb successively i times in a row so that Update0
b(shb) :=

shb,Update
(i+1)
b (shb) := Updateb(Update

i
b(shb)).

Reconstruct(sh1, sh2) → msg : The reconstruction algo-
rithm takes in some version of secret shares sh1, sh2 and it
outputs the secret message msg.

Correctness. We say that the scheme is correct if for any
shares (sh1, sh2) ← ShareGen(1λ,msg) and any sequence
of i ≥ 0, j ≥ 0 updates resulting in sh′1 ← Updatei1(sh1),
sh′2 ← Updatej2(sh2), we get Reconstruct(sh′1, sh

′
2) = msg.

Note that i and j are arbitrary, and may not be equal.

Security. We define `-CLR security as an interactive game
between an attacker A and a challenger.

• The attacker chooses two messages: msg0,msg1 ∈
{0, 1}∗ with |msg0| = |msg1|.

• The challenger chooses a bit b ← {0, 1} at random,
runs (sh1, sh2) ← ShareGen(1λ,msgb). The chal-
lenger also chooses randomness rand1, rand2 for the
next update of the shares 1,2 respectively and sets
state1 := (sh1, rand1), state2 := (sh2, rand2). It
initializes the counters L1 := 0, L2 := 0.

• The attacker A can adaptively make any number of the
following types of queries to the challenger in any order
of its choosing:
Leakage Queries: The attacker specifies an efficient
predicate Leak : {0, 1}∗ → {0, 1} and an index i ∈
{1, 2}. If Li < ` then the challenger responds with
the value Leak(statei) and increases the counter Li :=
Li + 1. Else it responds with ⊥.
Update Queries: The attacker specifies an index i ∈
{1, 2}. The challenger parses statei = (shi, randi) and
computes the updated share sh′i := Updatei(shi; randi)
using randomness randi. It samples fresh randomness
rand′i and sets statei := (sh′i, rand

′
i), Li := 0.

• At any point in the game, the attacker A can output
a guess b̃ ∈ {0, 1}. We say that A wins if its guess
matches the choice of the challenger b̃ = b.

We say that an `-CLRS scheme is secure if for any
PPT attacker A running in the above game, we have
|Pr[A wins ]− 1

2 | ≤ negl(λ).

REMARKS ON THE DEFINITION. The inclusion of the
update randomness randi in the state of the device models
leakage during the update process itself when this random-
ness is used. Note that we do not need to explicitly include
the next share sh′i = Updatei(shi; randi) in the state since
it is already efficiently computable from shi and randi.

The given definition also already implies that the message
remain hidden even if one of the shares is revealed fully at
the end of the game (but no leakage on the other share is
allowed afterwards). To see this, assume that at some point
in the game, there is a distinguishing strategy D that uses
a fully revealed share shi to break security. Then we could
also just leak the single predicate D(shi) to break security.

3.2. CLRS-Friendly Encryption

We consider an approach of instantiating CLRS via a
public key encryption scheme (KeyGen,Encrypt,Decrypt)
having the usual syntax. Given any such encryption scheme,
we can define a sharing scheme where the two shares are the
secret key sh1 = sk and the ciphertext sh2 = ct respectively.
Formally, we define:
ShareGen(1λ;msg) : Sample (pk, sk) ← KeyGen(1λ),
ct← Encryptpk(msg). Output sh1 := sk, sh2 := ct.
Reconstruct(sh1, sh2) : Parse sh1 = sk, sh2 = ct. Output
msg = Decryptsk(ct).

We say that an encryption scheme is updatable if
it comes with two additional (non-standard) procedures
sk′ ← SKUpdate(sk), ct′ ← CTUpdate(ct) for updating
the secret keys and ciphertexts respectively. These pro-
cedures can naturally be used to define updates for the
corresponding sharing via Update1(sh1) := SKUpdate(sk),
Update2(sh2) := CTUpdate(ct), where sh1 = sk, sh2 = ct.
The above gives us a natural syntactical transformation from
an updatable encryption scheme to a corresponding CLRS
scheme. We say that an updatable encryption scheme is an
`-CLRS-Friendly Encryption if:
• The corresponding CLRS scheme satisfies correctness.
• The corresponding CLRS scheme satisfies a

strengthening of `-CLRS security where the attacker
is first given the public key pk and then adaptively
chooses the messages msg1,msg2.

REMARKS. We note that the additional functionality pro-
vided by CLRS-friendly encryption on top of a plain CLRS
may be useful even in the context of sharing a secret between
leaky devices. For example, we can imagine a system where
one (continually leaky) master device stores a secret key
share and we publish the corresponding public key. Then
other devices can enter the system in an ad-hoc manner by
just encrypting their data individually under the public key
to establish a shared value with the master device (i.e. no
communication is necessary to establish the sharing). The
same secret-key share on the master device can be reused to
share many different messages with many different devices.

As another advantage, CLRS-friendly encryption right
away implies CLR-PKE schemes with continual leakage on
the secret key and the updates, in the sense of [6], [21].

4. SCHEME DESCRIPTION

We now describe our construction of CLRS going through
CLRS-Friendly Encryption. We give two encryption algo-
rithms – a simple one which is sufficient for CLR-PKE
where we update keys but not ciphertexts, and an updat-
able one which is needed for CLRS and CLRS-Friendly
Encryption.

Let m,n, d be integer parameters with n ≥ d. The scheme
is defined as follows.



KeyGen(1λ) → (pk, sk) : Sample the description of a
bilinear group (G1,G2,GT , e,g,h, q) ← G(1λ). Choose
~p, ~w ∈ Fmq at random subject to 〈~p, ~w〉 = 0 and set
prms = ((G1,G2,GT , e,g,h, q),g~p,h~w) to be the public
parameters of the system. These parameters can then be re-
used to create the public/secret keys of all future users. For
convenience, we implicitly think of prms as a part of each
public key pk and as an input to all of the other algorithms.

Choose ~t $← Fmq and set pk := e( g~p , h~t
>

) = e(g,h)α

where α = 〈~p,~t〉. Choose ~r = (r1, . . . , rn)
$← Fnq and set

sk := hS , where S is the n×m matrix given by

S :=

 r1 ~w + ~t
· · ·

rn ~w + ~t


=

 ~r>

 [ ~w
]

+

 ~1>

 [ ~t
]
.

In other words, each row of S is chosen at random from
the 1-dimensional affine subspace ~t + span(~w). (Note that
hS can be computed from the components h~w, ~t, ~r without
knowing ~w.)

(Simple) SimplEncryptpk(msg) → ct : To encrypt
msg ∈ GT under pk = f = e(g,h)α, choose u ∈ Fq and
output: ct = (gu~p, fu ·msg).

(Updatable) Encryptpk(msg) → ct : To encrypt
msg ∈ GT under pk = f = e(g,h)α, choose
~u = (u1, . . . , un)

$← Fnq and output ct = (ct(1), ct(2))
where:

ct(1) =

 gu1~p

. . .
gun~p

 , ct(2) =

 fu1 ·msg
. . .

fun ·msg


Each row is an independent encryption of the (same) mes-
sage msg using the simple encryption process. Equivalently,
we can write the ciphertext as ct(1) = gC , ct(2) =
e(g,h)~z

>
for:

C =

 ~u>

 [ ~p
]

~z> =

 ~u>

α+

 ~1>

µ
=

 C

 t>

+

 ~1>

µ
where µ is given by msg = e(g,h)µ and α = 〈~p,~t〉.
Decryptsk(ct)→msg: To decrypt, we only need to look

at the first rows of the secret key and the ciphertext matrices.
Given the first row h~s of the secret key sk = hS , the first

row g~c of the ciphertext component ct(1) = gC , and the first
scalar component e(g,h)z of ct(2) = e(g,h)~z

>
, the decryp-

tion algorithm outputs: msg = e(g,h)z/e( g~c , h~s
>

).
SKUpdate(sk) → sk′ : Choose a random matrix A′

$←
Rkd(Fn×nq ). Derive A by “rescaling” each row of A′ so
that its components sum up to 1. That is, set (A)i,j :=
(A′)i,j/(

∑n
k=1(A′)i,k), so that A~1> = ~1>. If the current

secret key is sk = hS , output the updated key sk′ := hAS .
CTUpdate(ct) → ct′ : Choose a random matrix B′

$←
Rkd(Fn×nq ). Derive B by “rescaling” each row of B′ so
that its components sum up to 1. That is, set (B)i,j :=
(B′)i,j/(

∑n
k=1(B′)i,k), so B~1> = ~1>. If the current cipher-

text is ct = (gC , e(g,h)~z
>

), output the updated ciphertext
ct′ := (gBC , e(g,h)B~z

>
).

Theorem 4.1. For any integers m ≥ 6, n ≥ 3m − 6, d :=
n−m+3 the above scheme is an `-CLRS-friendly encryption
scheme under the SXDH assumption for any

` = min(m/6− 1, n− 3m+ 6) log(q)− ω(log(λ)).

In the above theorem, the absolute leakage (`) scales linearly
as min(m,n − 3m) or log(q) grow. The ratio of leakage
to share size is `/(nm log(q)), and is maximized at m =
7, n = 16 to roughly 1/672.

Corollary 4.2. For any polynomial ` = `(λ), there exist `-
CLRS schemes under the SXDH assumption. Furthermore,
` is a constant fraction of the share size.

Lastly, if we only care about encryption with continual
leakage on the secret key and update randomness, then there
is no need to update ciphertexts and we can use the “simple”
encryption strategy.

Corollary 4.3. For any m,n, d as above, the scheme
(KeyGen, SimplEncrypt, Decrypt, SKUpdate) is an `-CLR-
Encryption with leakage-of-updates, under the SXDH as-
sumption and for the same ` as above.

CORRECTNESS. Let (prms, pk, sk)← KeyGen(1λ) and let
ct = (ct(1), ct(2)) ← Encryptpk(msg). Then we can write
sk = gS , ct(1) = hC , ct(2) = e(g,h)~z for some values
S,C, ~z satisfying:

S = W +~1>~t , ~z> = C~t> +~1>µ (1)

with rowspan(W ) ⊥ rowspan(C) and µ given by msg =
e(g,h)µ. First, we show that for any sk and ct having
the above form, we get Decryptsk(ct) = msg. This is
because decryption looks at the first row of sk, ct(1), ct(2)

respectively, which are of the form h~s,g~c, e(g,h)z where
~s = ~w + ~t, z = 〈~c,~t〉 + µ for some vectors ~w,~c,~t with
〈~c, ~w〉 = 0. Therefore decryption correctly recovers:

e(g,h)z/e( g~c , hs
>

) = e(g,h)〈~c,
~t〉+µ/e(g,h)〈~c,~w+~t〉

= e(g,h)µ = msg



Next we show, that updates preserve the key/ciphertext
structure of equation (1). Assume that we update the
secret key with the matrices A1, A2, . . . , Ai and the ci-
phertext with the matrices B1, B2, . . . , Bj . Define Ā =
AiAi−1 · · ·A1, B̄ = BjBj−1 · · ·B1. Since the update ma-
trices are “rescaled” we know that Ā~1> = B̄~1> = ~1>.
Therefore we can write the updated values as ski = gĀS ,
ct

(1)
j = hB̄C , ct

(2)
j = e(g,h)B̄~z

>
satisfying:

(ĀS) = (ĀW ) +~1>~t , (B̄~z>) = (B̄C)~t> +~1>µ

with rowspan(ĀW ) ⊥ rowspan(B̄C). So the structure of
equation (1) is satisfied by the updated keys and ciphertexts
and we get Decryptski(ctj) = msg.

5. SECURITY PROOF OVERVIEW

Our proof of security will follow by a hybrid argument.
In the real security game, the original secret key and every
updated version of it correctly decrypts the original cipher-
text and every updated version of it. Our goal is to move to
a modified game where none of the secret keys can correctly
decrypt any of the ciphertexts, and in fact the message
remains hidden even given these modified keys/ciphertexts
in full. We do so by slowly modifying how the challenger
chooses the initial key, ciphertext and the update matrices. In
Section 5.1, we first introduce several alternate distributions
for selecting keys and ciphertexts, some of which decrypt
correctly and some don’t. We also show how to select update
matrices to modify the key/ciphertext type. In Section 5.2,
we then lay out a careful hybrid argument proof strategy for
moving between the various distributions.

5.1. Alternate Distributions for Keys, Ciphertexts, Updates

Assume that the vectors ~p, ~w,~t are fixed, defining the
public values g~p,h~w, pk = e(g,h)〈~p,~t〉. Fix ~w1 := ~w, and let
(~w1, . . . , ~wm−1) be some basis of (~p)⊥ and (~c1, . . . ,~cm−1)
be some basis of (~w)⊥. We define various distributions of
keys and ciphertexts relative to these bases.

KEY DISTRIBUTIONS. The secret key is always set to hS

for some n×m matrix S of the form S = | |
~r>1 · · · ~r>i
| |

 − ~w1 −
· · ·

− ~wi −

+

 ~1>

 [ ~t
]

(2)
where ~r1, . . . , ~ri ∈ Fnq are chosen randomly. Equivalently,
each of the n rows of S is chosen randomly from the affine
space: span(~w1, . . . , ~wi) + ~t. The honest key generation
algorithm uses i = 1 and we call these honest keys. In
addition, we define mid keys which are chosen with i = 2
and high keys which are chosen with i = m − 1. Notice
that honest/mid/high keys all correctly decrypt honestly
generated ciphertexts since span(~w1, . . . , ~wm−1) ⊥ span(~p).

CIPHERTEXT DISTRIBUTIONS. The encryption of the mes-
sage msg = e(g,h)µ ∈ GT is always set to ct =

keys →
↓ ciphertexts honest mid high

honest Yes Yes Yes
low Yes Cor or Super-Corr No
mid Yes Super-Corr No
high Yes No No

Figure 1. Do alternate keys correctly decrypt alternate ciphertexts?

(ct(1), ct(2)) where ct(1) = gC and ct(2) = e(g,h)~z
>

with ~z> = C~t> + ~1>µ. The second component ct(2) can
always be efficiently and deterministically computed from
gC , given ~t and msg, without knowing the exponents C, µ.
The different ciphertext distributions only differ in how
ct(1) = gC is chosen.

For the honest ciphertexts, we set C = ~u>~p for a
uniformly random ~u ∈ Fnq . That is, every row of C is chosen
at random from the space span(~p). In addition to the honest
way of choosing C, we define three additional distributions
on C given by:

C =

 | |
~u>1 · · · ~u>j
| |

 − ~c1 −
· · ·

− ~cj −

 (3)

where ~u1, . . . , ~uj ∈ Fnq are chosen randomly. Equivalently
the rows of the C are chosen randomly from the subspace:
span(~c1, . . . ,~cj). When j = 1, we call these low ciphertexts,
when j = 2 we call these mid ciphertexts and when
j = (m − 1), we call these high ciphertexts. Notice that
honest/low/mid/high ciphertexts are all correctly decrypted
by honest secret keys since span(~w) ⊥ span(~c1, . . . ,~cm−1).

BASES CORRELATIONS. By default, we choose the ba-
sis (~w1, . . . , ~wm−1) of the space (~p)⊥ and the basis
(~c1, . . . ,~cm−1) of the space (~w)⊥ uniformly at random
and independently subject to fixing ~w1 := ~w. This is
statistically close to choosing ~w2, . . . , ~wm−1

$← (~p)⊥ and
~c1, . . . ,~cm−1

$← (~w)⊥. We call this choice of bases uncor-
related. We will also consider two alternate distributions.
We say that the bases are correlated if we instead choose
~c1

$← (~w1, ~w2)⊥ and all other vectors as before. We say
that the bases are super-correlated if we instead choose
~c1,~c2

$← (~w1, ~w2)⊥ and all other vectors as before. If the key
and ciphertext bases are correlated then mid keys correctly
decrypt low ciphertexts and if they are super-correlated then
mid keys correctly decrypt low and mid ciphertexts. The
table in Figure 1 summarizes which types of secret keys
can correctly decrypt which types of ciphertexts.

PROGRAMMED UPDATES. Honest key updates in period i
are performed by choosing A′i

$← Rkd(Fn×nq ) and rescal-
ing its rows to get Ai. Let Di = AiAi−1 · · ·A1 be the
product of all key-update matrices up to and including
period i (as a corner case, define D0 to be the iden-
tity matrix). We say that the update Ai is programmed
to annihilate the vectors ~v1, . . . , ~vj ∈ Fnq if we instead
choose A′i

$← Rkd(Fn×nq | row ∈ V) where V =



(Di−1~v
>
1 , . . . , Di−1~v

>
j )⊥. In other words, a programmed

update Ai has the vectors {Di−1~vρ}jρ=1 in its kernel. We
define programmed ciphertext updates analogously.

By programming the update matrices, we can have up-
dates which reduce the rank of the key/ciphertext matrices
(e.g. reduce high keys to mid keys, or mid ciphetexts to
low ciphertexts). Let us go through an example. Assume the
initial key is high with sk1 = gS for S given by equation (2),
and the updates A1, . . . , Ai−1 are chosen honestly, Ai is pro-
grammed to annihilate the vectors ~r3, . . . , ~rm−1 and Ai+1 is
programmed to annihilate ~r2. Then the corresponding secret
keys sk1, . . . , ski in periods 1 to i will be high keys, ski+1

will be a mid key and ski+2 will be an honest key. To see
this, notice that the exponent of (e.g.) the key ski+1 will
follow equation (2) with ~r>j replaced by AiAi−1 · · ·A1~r

>
j .

Since Ai is programmed to annihilate the vectors ~rj for
j ≥ 3, these values will be replaced by ~0 in period i+ 1.

5.2. The Hybrid Proof Strategy

We use a series of hybrids, where each step either takes
advantage of the fact that the adversary is computationally
bounded and cannot distinguish the rank of various matrices
in the exponent, or of the fact that the adversary is leakage
bounded and is only seing partial leakage on any key
and ciphertext. When we use computational steps, we can
even assume that the attacker gets full leakage and so we
cannot modify any property of the game that could be
efficiently tested given the keys and ciphertexts in full –
in particular, we cannot modify whether any secret key
correctly decrypts any ciphertext in any time period. When
we use leakage steps, we can even assume that the attacker
is computationally unbounded and hence we cannot modify
the distribution of any individual key/ciphertext/update – but
we can modify various correlations between them.5

The main strategy is to move from a game where all
keys/ciphertexts/updates are honest to a game where the
keys and ciphertexts no longer decrypt correctly. We can use
computational steps to change the distribution of the initial
key (honest/mid/high) or ciphertext (honest/low/mid/high)
but only if they still decrypt correctly. For example, we
can make the initial key and ciphertext both be mid, but
only if the bases are super-correlated. We then want to
use a leakage step to argue that the attacker cannot notice
the correlation between the bases vectors ~w2 ⊥ ~c2. We
rely on the fact that given partial independent leakage on
two vectors, one cannot distinguish whether the vectors are
orthogonal or not, which follows from inner-product being
a good two-source extractor. Unfortunately, since leakage
on keys and ciphertexts is continual, we cannot argue that

5This is a good way of viewing essentially all prior results in leakage
resilient cryptography. Since we do not have computational assumptions
that address leakage directly, we alternate between using computational
assumptions that work even given full leakage and information theoretic
steps that take advantage of the leakage being partial.

leakage on the bases vectors ~w2,~c2 is partial. To get around
this, we carefully program our updates to reduce the rank
of future keys/ciphertexts, so that the leakage on the vectors
~w2,~c2 only occurs in a single key and ciphertext respectively.
We carefully arrange the hybrids so as to make this type of
argument on each key/ciphertext pair, one at a time.
HYBRID GAMES. A helpful pictorial representation of
the main hybrid games appears in Figure 2. Our hybrid
games, called Game (i, j) are all of the following type.
For i ≥ 2, the challenger chooses the initial key sk1 as
a high key, the first i − 2 updates are honest (and hence
the keys sk1, . . . , ski−1 are high keys), the update Ai−1 is
programmed to reduce the key to a mid key ski, and the
update Ai is programmed to reduce the key to a honest
key ski+1. The rest of the updates are honest and hence
the keys ski+1, ski+2, . . . are honest. For the special case
i = 1, the initial key sk1 already starts out as a mid key
and the first update A1 reduces it to an honest key. For the
special case i = 0, the initial key sk1 is already an honest
key. This description is mirrored by the ciphertexts. When
j ≥ 2, the initial ciphertext ct1 is a high ciphertext, the first
j−2 ciphertext updates are honest (and hence the ciphertexts
ct1, . . . , ctj−1 are high), the update Bj−1 is programmed
to reduce the ciphertext to a mid ctj , and the update Bj
is programmed to reduce the ciphertext to a low ciphertext
ctj+1. The rest of the updates are honest and hence the other
ciphertexts stay low. For the special case j = 1, the initial
ciphertext ct1 is already mid and the first update B1 reduces
it to low. For the special case j = 0, the initial ciphertext
ct1 is already low.

We write Game i as short for Game (i, j = 0). In Game
(i, j) the ciphertext and key bases are uncorrelated. We also
define analogous games: GameCor (i, j) where the bases
are correlated and GameSuperCor (i, j) where the bases
are super-correlated.
SEQUENCE OF HYBRIDS. See Figure 3 for a helpful
overview of the sequence of hybrid games.

Our first step is to move from Real Game to Game 0 (i.e.
i = 0, j = 0). The only difference in this step is that we
change the initial ciphertext ct1 from an honest ciphertext to
a low ciphertext. This is a computational step and all secret
keys still correctly decrypt all ciphertexts in the game.

Next, our goal is to keep moving from Game i to Game
i + 1. We call this the outer loop where we increment i.
Unfortunately, we cannot just increment i in a single step
since each such move changes ski+1 from an honest key to
a mid key and hence changes it from decrypting all of the
low ciphertexts in the game to decrypting none of them. A
single computational or leakage step cannot suffice.

Instead, we can move from Game i to GameCor i + 1
in a single computational step. Even though the key ski+1

changes from an honest key in Game i to a mid key in
GameCor i + 1, by making the bases correlated we ensure
that it still correctly decrypts all of the low ciphertexts in



the game. Therefore, these games cannot be distinguished
even given full leakage.

To move from GameCor i + 1 to Game i + 1, we first
introduce an inner loop in which we slowly increment j.
Starting with j = 0, we move from GameCor (i + 1, j) to
GameSuperCor (i+1, j+1). This is a single computational
step. Even though we change ctj+1 from a low ciphertext
to a mid ciphertext, it is still correctly decrypted (only) by
the mid and low keys in periods i + 1 and later, since the
bases are super-correlated. Therefore, these games cannot
be distinguished even given full leakage. Finally, we use
an information theoretic step to move from GameSuperCor
(i+1, j+1) to GameCor (i+1, j+1). Here we are actually
changing whether a single key ski+1 correctly decrypts a
single ciphertext ctj+1 (it does in GameSuperCor but not
in GameCor). We use the fact that the adversary is leakage-
bounded to argue that it cannot notice whether the bases
are correlated or super-correlated. In particular, because
the bases vectors ~w2 and ~c2 only occur in the single mid
key ski+1 and the single mid ciphertext ctj+1 respectively,
the leakage on these vectors is bounded overall. We argue
that such partial leakage hides whether ~w2 ⊥ ~c2, which
determines if the bases are correlated or super-correlated.

Assume that the attacker makes at most qct update queries
on the ciphertext and at most qsk update queries on the
secret key. By repeatedly increasing j in the inner loop, we
move from GameCor (i+ 1, 0) to GameCor (i+ 1, qct + 1)
where all of the ciphertexts that the attacker can leak on
are high ciphertexts. Therefore the mid key ski+1 does not
decrypt any of them correctly (but all future honest keys
still do). We now apply another computational step to move
from GameCor (i+ 1, qct + 1) to Game i+ 1 and therefore
(finally) incrementing i in the outer loop. This step preserves
all interactions between keys and ciphertexts and therefore
these games cannot be distinguished even given full leakage.
Lastly, by repeatedly increasing i in the outer loop, we can
move from Game 0 to Game qsk + 1 where all of the secret
keys that the attacker can leak on are high keys and all of the
ciphertexts are low ciphertexts. Therefore, in Game qsk + 1
none of the keys correctly decrypts any of the ciphertexts.
Hence we can argue that even an attacker that has full
leakage in Game qsk +1 cannot learn any information about
the shared/encrypted message msg.

UNDER THE RUG. The above discussion is slightly oversim-
plified. The main issue is that the computational transitions,
e.g. from Game i to GameCor i+1, are not computationally
indistinguishable the way we defined the games. This is
because in Game i the update matrix Ai+1 is unlikely to
annihilate any vectors (i.e. its kernel is unlikely to contain
non-zero vectors from the span of the previous updates)
while in GameCor i + 1 it is programmed to annihilate
vectors so as to reduce the dimension of the key. This
can be efficiently tested given full leakage of the update

matrices. Therefore, in the full proof, we define the games
Game, GameCor and GameSuperCor slightly differently
with some updates programmed to annihilate additional
uniformly random vectors. With this modification, we can
prove computational indistinguishability. We also need extra
information theoretic steps to argue that the attacker cannot
tell if updates are programmed to annihilate some random
vectors, given limited leakage.
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APPENDIX

The arrows ↓ indicate programmed updates.

Figure 2. An Overview of the Main Hybrid Games

Real
comp
≈ Game 0.

For i ∈ {0, . . . , qsk} :
. Game i

comp
≈ GameCor (i+ 1, 0).

. For j ∈ {0, . . . , qct}

. GameCor (i+ 1, j)
comp
≈ GameSuperCor (i+ 1, j + 1)

.
stat
≈ GameCor (i+ 1, j + 1).

. GameCor (i+ 1, qct + 1)
comp
≈ Game i+ 1.

Game qsk + 1
comp
≈ GameFinal.

Figure 3. Sequence of Hybrids: Real
comp
≈ GameFinal.


